Geometry: 3.1-3.3 Notes

Ν	Aľ	M	E
_ _ ,	1 1 1		1

3.1 Identify parallel and perpendicular lines as well pairs of angles formed by transversals. Date: Define Vocabulary:

parallel lines

skew lines

parallel planes

transversal

corresponding angles

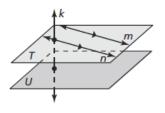
alternate interior angles

alternate exterior angles

consecutive interior angles

Parallel Lines, Skew Lines, and Parallel Planes

Two lines that do not intersect are either *parallel lines* or *skew lines*. Two lines are **parallel lines** when they do not intersect and are coplanar. Two lines are skew lines when they do not intersect and are not coplanar. Also, two planes that do not intersect are **parallel planes**.



Lines *m* and *n* are parallel lines $(m \parallel n)$.

Lines m and k are skew lines.

Planes T and U are parallel planes $(T \parallel U)$.

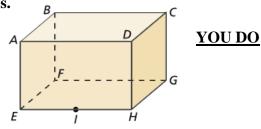
Lines k and n are intersecting lines, and there is a plane (not shown) containing them.

Small directed arrows, as shown on lines m and n above, are used to show that lines are parallel. The symbol || means "is parallel to," as in m || n.

Segments and rays are parallel when they lie in parallel lines. A line is parallel to a plane when the line is in a plane parallel to the given plane. In the diagram above, line n is parallel to plane U.

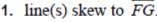
Examples: Identify lines and planes.

WE DO





- **a.** line(s) parallel to \overrightarrow{GH} and containing point F
- **b.** line(s) skew to \overrightarrow{GH} and containing point F
- c. line(s) perpendicular to \overrightarrow{GH} and containing point F
- d. plane(s) parallel to plane GHD and containing point F



- 2. line(s) perpendicular to \overrightarrow{FG} .
- 3. line(s) parallel to \overline{FG} .
- 4. plane(s) parallel to plane FGH.

Postulate 3.1 Parallel Postulate

If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line.

There is exactly one line through *P* parallel to ℓ .

Postulate 3.2 Perpendicular Postulate

If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line.

There is exactly one line through *P* perpendicular to ℓ .

Examples: Identifying parallel and perpendicular lines. Using the diagram.

WE DO

- 1. Name a pair of perpendicular lines.

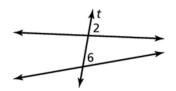
4. Is $\overrightarrow{ST} \perp \overrightarrow{NV}$? Explain.

2. Is $\overrightarrow{WX} \parallel \overleftarrow{QR}$? Explain.

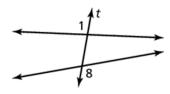
YOU DO

3. Name a pair of parallel lines.

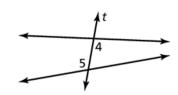
Angles Formed by Transversals



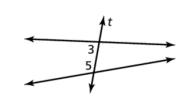
Two angles are **corresponding angles** when they have corresponding positions. For example, $\angle 2$ and $\angle 6$ are above the lines and to the right of the transversal *t*.



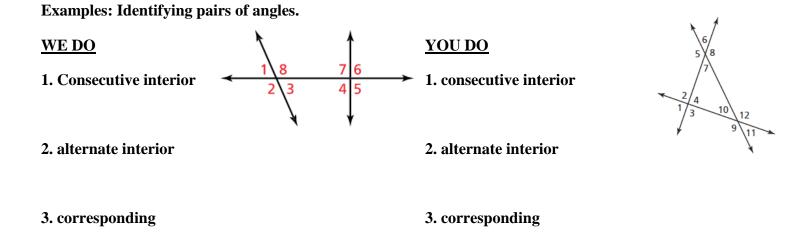
Two angles are **alternate exterior angles** when they lie outside the two lines and on opposite sides of the transversal *t*.



Two angles are **alternate interior angles** when they lie between the two lines and on opposite sides of the transversal *t*.



Two angles are **consecutive interior angles** when they lie between the two lines and on the same side of the transversal *t*.



4. alternate exterior

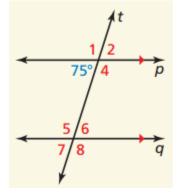
4. alternate exterior

G Theorems Theorem 3.1 Corresponding Angles Theorem If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. **Examples** In the diagram at the left, $\angle 2 \cong \angle 6$ and $\angle 3 \cong \angle 7$. Proof Ex. 36, p. 180 Theorem 3.2 Alternate Interior Angles Theorem If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent. **Examples** In the diagram at the left, $\angle 3 \cong \angle 6$ and $\angle 4 \cong \angle 5$. Proof Example 4, p. 134 Theorem 3.3 Alternate Exterior Angles Theorem If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent. **Examples** In the diagram at the left, $\angle 1 \cong \angle 8$ and $\angle 2 \cong \angle 7$. Proof Ex. 15, p. 136 Theorem 3.4 Consecutive Interior Angles Theorem If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary. **Examples** In the diagram at the left, $\angle 3$ and $\angle 5$ are supplementary, and

Examples: State the angles who have the same measure as the one given. Explain.

 $\angle 4$ and $\angle 6$ are supplementary.

WE DO



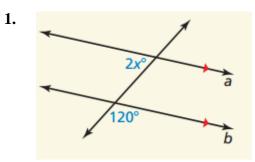
Proof Ex. 16, p. 136

YOU DO

 $m \angle 1 = 105^{\circ}$

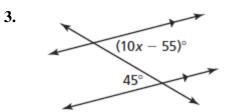
Examples: Use parallel lines to find the value of the variable.

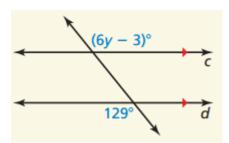
WE DO



YOU DO

4.





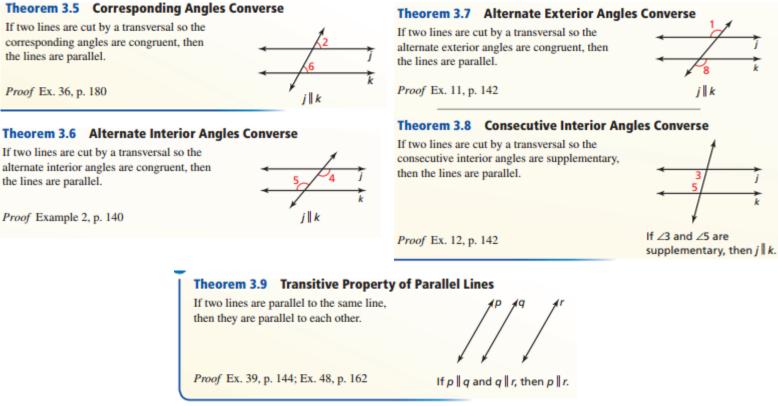
4x° 6 52°

Assignment	
-	

3.3 Prove lines are parallel.

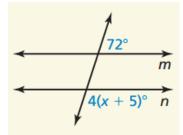
Define Vocabulary:

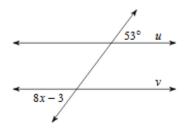
converse

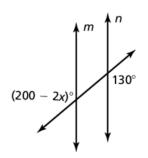


Examples: Find the value of x that makes $m \parallel n$ and $v \parallel u$.

WE DO





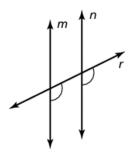


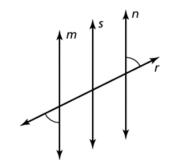
If two lines are cut by a transversal so the alternate interior angles are congruent, then the lines are parallel.

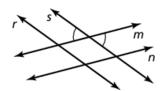
Examples: Decide whether there is enough information to prove $m \parallel n$. If so state the theorem you would use.

WE DO

YOU DO







Assignment
